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Log-stable laws as asymptotic solutions to a fragmentation equation:
Application to the distribution of droplets in a high Weber-number spray
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In this paper, it will be shown that “totally skewed to the left” log-stable distributions are suitable asymptotic
solutions to a fragmentation equation. This result generalizes Kolmogorov’s work on log-normal distribution
for the drops’ size number distribution of particles under pulverization. Indeed, Kolmogorov’s discrete process
is extended to a continuous time Markov process for the volume distribution instead of the number distribution.
New hypotheses are then introduced which lead to log-stable distributions as asymptotic solutions of the
fragmentation equation. Log-stable laws are then used to fit experimental probability distribution figpndfjon
of Simmons and Hanratty measuring drop sizes in a horizontal annular gas-liquid flow at high Weber number
[Int. J. Multiphase Flow27, 861(200J)]. Log-stable pdf better fits to the experimental pdf than usual empirical
spray pdf and especially, because of the heavy tail of the associated stable distribution, in the small drops part
of the distribution.

DOI: 10.1103/PhysReVvE.69.056316 PACS nunerd7.55.Kf, 02.50.Ga, 47.53n

[. INTRODUCTION first three moments by assuming that there exists a real num-
ber a such that moments of order and above are infinite,

There is a real industrial incentive in developing soundlyand it leads asymptotically to a log-stable volume pdf. In the
founded drop spray probability distribution functigpdf).  second part, this modeling is applied to the distribution of
Commonly used pdf's are Rosin-Ramml@kin to Weibull  droplets in a high Weber number spray: a log-stable volume
pdf), modified Rosin-Rammlegakin to log-Weibull pdf, or  drops pdf is fitted to spray pdf obtained by Simmons and
upper-limit log-normal pdf of Mugele and Evafif]. But all ~ Hanratty[13] in a horizontal annular gas-liquid flow. Com-
of these, except the seldom used log-normal pdf, are built oparison is then made between these pdf's and the most
empirical grounds. In this paper, a fragmentation equation isvidely used ones in atomizatiofiog-Weibull, upper-limit
proposed which possesses asymptotically self-similar logEvans, and log-normalThe good performance of log-stable
stable drop volume pdf solutions. This result may be used fogistributions in the least square sense is enhanced by their
modeling high Weber-number sprays. better ability to model the tail or small-drops part of the

Related works, on atomization, date back to Kolmogorowdistribution and to fit moments of the distribution. This may
[2] who proposed in 1941 a discrete Markov process explainactually prove to be important for some modeling of poly-
ing why the log-normal distribution could be used as a numdisperse multiphase systems built on moments of the distri-
ber pdf for particles during pulverization. Oboukhf8] ap-  bution: for instance, on the spray intensity, i.e. the volume
plied this modeling to turbulence intermittencies, which wasnumber of drops, or on the surface volumetric density.
one of the roots of the “refined similarity hypothesis” devel-
oped in 1962 by Kolmogoroy4]. More recently, Novikov
proposed to apply some ideas on turbulence intermittencies
[5] back to turbulent spray modeling through the use of in-
finitely divisible pdf[6], of whom stable distributions form a Experimental results in Sec. lll indicate that, totally
small subset. However, infinitely divisible distributions are skewed to the left log-stable volume pdf, are good candidates
too generic to be easily handled or computed. In a relateeo describe spray pdf. In this section, we present a possible
way, Zhou and YJ7] proposed a multifractal analysis of the theoretical justification of this fact. Part of our work is based
spray generated by an air-blast nozzle but without relating ibn Ref.[8], in which a stochastic modeling asymptotically
explicitly to the spray pdf. Lastly, the work of Kolmogorov leading to a log-normal number distribution is obtained. We
has been extended to continuous time and further analyzgstesent here a simpler derivation of the equation and gener-
by Gorokhovski and Saveliep8]. Their continuous Markov alize these results further, first to volume distributions and
process is very similar to Kostogloufd] fragmentation second to log-stable pdf.
equation with a homogeneous kernel. Finally, let us pinpoint
that log-stable distributions have already been used in turbu-
lence intermittency modeling by Kidd 0,13 and Schertzer
and co-workerg12].

In the first part of this paper, we generalize Kolmogorov’s ~Let »(r) be the frequency of disintegration of drops of
work from numberpdf to volumepdf using the formalism radiusr. Let V(r) be the volume occupied by drops of radius
developed by Gorokhovski and Saveli@}. It is then shown r and let, in this fragmentation or atomization process,
that replacing Kolmogorov's hypothesis of finiteness of theqg(a).da be the fraction of the volum¥(r) that creates drop-

II. FRAGMENTATION EQUATION AS A MASTER
EQUATION FOR THE VOLUME DISTRIBUTION

A. Derivation of the master equation
of the volume distribution
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lets whose sizes are in the randa,a+da]. Then the vol- AT(X)  ~

ume lost in a unit time by drops in the ranfg ry+drq] is It (.= DT, (6)
equal tor(rq)V(ry)dry, and the resulting volume gained by

drops in the range rq a,a+da] is equal to 0

v(ry)V(ry)driq(a)da. To obtain the volume of drops in the T_-T(x) :f T(x-b)\(b)db (7)
range[r,r+dr], let us notice that the relatiom,=r/a is a —o

simple change of variable, so that the differential elemen
dadr; can be written as

by making the assumption that
0
dadrl — dTaadr' (1) J_m |b|s)\(b)db< o for s=1,2,3 (8)

Then, assuming that multipliera belong to the interval and considering that is constant, Kolmogorov concluded

[0,1], the volume gained in a unit time by drops in the rangethatT is asymptotically normal. However, there is a@riori

[r,r+dr] is equal to reason to assum@) and we will drop this hypothesis, con-
sidering that

1 1 d
fo q(a)v(r YV(r dadr, = dr JO q(a»(é)v(g)f, 2)

0
f Ab)db=1 (9)

which leads to )
and that there exists<ta<2 such that

aV(r)
—=(_-1 V(r)], 3 0
gr ~ T O] © f IbjS\(b)db< e for s< a, (10)
where -
Yoy da O - 4o -
I_F(r):JO F(gl)q(a);. (4) Lo|b| Nb)db= +x for s= a. (11)

It can be first noted that rescaling both sides of @by the
total volume of liquid would give the same equation since it B. Asymptotic self-similar log-stable solution
is a constant. Therefore up to this rescaliMfr) can be

: TR ) Let Il, Refl17], that Lé table distributi
considered as the volume distribution of diametef&r): et us recall, see Ref17], that Lévy stable distributions

are defined from their Fourier characteristic function as fol-

V(r) lows.
f2r)=——— (5) A random variable X is said to have a stable distribution
f V(r)dr denoted l,(x;B,0,u) if there are real parameter®<a
0 <2, 0<o, -1=<B=<1, and u such that its characteristic

function has the following form
Second, the hypothesis thgashould only depend on the ratio

a between the radius of the daughter drops and the parents’p,(k; 8,a, 6) = expliku — o*|K|*[1 +i[sgnk)]Bw(|K|,a)]),
drop is a very strong hypothesis called “scaling similarity” in (12)
Ref. [14] and “homogeneous kernel” in RegO]. It can be
assumed that this is valid for spray with a very high Webemwhere
number We and low or finite Ohnesorge number(€de Sec.
tananw/2) if a#1
o(kl,a) = {

- (2/m)Ink| if =1,

[l for a definition of these numbeysBreakup of drops is
then mainly governed by their kinetic energy, which can be
thought as nearly infiniteg) can then be considered as scale
independent. This is not the case for lower value of We orand« is the stability index governing the decrease of the tail
very high value of Olf16]. Finally, let us note that Eq3)is  of the probability,o is the scale parameter analogous to the
very similar to the homogeneous fragmentation equation o$tandard deviation of the normal law, apdis the shift pa-
Ref.[9] but the kernel is, here, assumed to be continuous anchmeter governing, but not to be confounded with, the mean

not discrete. of the distribution.8 is a skewness paramet@s 0 indicates
Making, as Kolmogoroy2], the following change of vari- a symmetric distribution3<0 a distribution skewed to the
able: left, and >0 a distribution skewed to the right. One can
notice that ifa=2, the distribution is Gaussian and the pa-
T(x) = V[exp(x)], ¥(x) = v[exp(x)], b=In(a), and rameterg is meaningless since(|k|, a)=0 (normal distribu-
M(b)db=q(a)/a da tions are not skewgdWhenB=-1 totally skewed Lévy dis-
tributions are also characterized by their two-sided Laplace
yields transform which readgl7] (for «# -1 andg>0)
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a paramete3=-1 and scale parameter So, we can point out

(exp(—- qX)) = exd qd - S{—m>qa : (13 that
co

7 1 X J—
T(xt) ~ mpa(m;— 1,0,%— M) (t—o) (19
In order to show that totally skewed stable distributions are t t

suitable solutions of Eq6), let us rewrite Eq(7) as is an asymptotic self-similar solution to E¢6) using hy-
5 +o0 potheseg9)—(11). Settinga=2 leads to Kolmogorov’s pre-
I_-T(x) :f T(b)A(x—b)db vious result.
X

+e C. Distribution of conservative or nonconservative quantity
= T(b)H(b = x)A(x— b)db, (14) i o )
— An equation similar to Eq(3) has been obtained by Gor-

okhovski and Saveliev in Ref8] for the numberF(r) of
droplets of radius. But the frequency had to be replaced
by qov, whereqy>1 is the mean number of droplets result-
ing from the breakup of the parent drop. Since the total num-

where H is the Heaviside function. Then using two-sided
Laplace transform, one gets, taking the constant vaki
for the rate:

IT(st) ber of droplet: is increasing with time, a normalized num-
T [A(9) - 1]T(s 1), (15 ber distribution of droplets is defined &sF/n. Taking the
moment of Eq.(3) and integrating, they could obtain the
where following evolution equation for the number of drops:
* an
() = J N(=x)exp(sXdx ot = v5(gp— )N,
0
is actually a one-sided Laplace transform due to the introSO that the rescaled distributidrsatisfied Eq(3) exactly. We
duction of the Heaviside function. This leads to could have chosen the same way and would have obtained
that the number distribution may asymptotically be log-
T(s,t) = T(s,00exd (A (s) — Dt]. (16)  stable. However, there is a strong assumption in doing so; the

mean number of dropletg, is meaningful, i.e., finite and
independent of the scaleor the ratioa. Reasoning directly
with conserved quantities, such as volume for instance, cir-

From hypothese®)—(11) and a Tauberian theorefi8], we
obtain that the one-sided Laplace transform\¢fx) reads

near 0 cumvents this problem as the rescaling is made using a con-
NS =1 s+ 7+ (8, (17) stant value and the extra parameatgfis no longer needed.
whereN is the mean of\(—x) and y is a real number which lll. LOG-STABLE PDF IN A HORIZONTAL ANNULAR
can be written as GAS-LIQUID FLOW
o We are now in position to show that soluti¢h9) can fit
Y=- . experimental pdf. Actually conditione9)—(11) with 1<«
T . . . .
0047) =<2 have been inspired by the following experimental results

since we could also have choserto be in the range € «

If initially T(x,0)=4,, thenT is asymptotically a stable pdf < 1. This choice was thus not arbitrary.

totally skewed to the left. Indeed, in the lintit> o, the real .
part of the term in the exponential is diverging toward — A. Experimental setup

e°"T(s,)ds to the volume pdf is negligible. This is not the 1) in a horizontal annular gas-liquid flow. Though the ex-
case if we impose“t to stay finite and we get the asymptotic perimental setup is well detailed in RéfL.2] and in refer-

result ences therein, its principle is briefly recalled. The flow loop
. - is an acrylic cylinder 27 m long and of diametéy,,
T(s,t) ~ exp s(xg—At) = (t— o, finite), =0.0953 m wide. Air and water mass flows and velocities are
co{ﬂ) metered at the entrance and measurements are made 21 m
2 away from the entrance so that the flow can be considered as

(18) fully developed. Drop diametei3 are measured with a Mal-
vern Spraytec RTS 5008 analyzer. Data were processed on
which is the Laplace characteristic function of arstable  billions of drops giving very smooth pdf over three decades
distribution with 3=-1 and scale parametet'/®. The vol-  of drop diameters(ranging from less than m to
ume distribution can be interpreted as a pdf for the randon1000 xm). Important parameters of the experiments \égg
variablex=In(r). Using scaling properties of Lévy distribu- the velocity of the liquid relatively to the solid cylinder,
tion [17], x/t¥« is a stable law of stability index, skewness ranging from 2.2 to 13.5 cm/s, andsg the velocity of the
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gas relatively to the solid, ranging from 30 to 50 m/s. From (In D)t InD-1InDy,\%
these external parameters, one can calculate two important ~ fW(D)=a—————exp -\ ——— | |, (24
. . D(In X) In X
dimensionless numbef49]:
the global Weber number the modified Rosin-Rammler pdf is a log-Weibull distribu-

tion whereD,,=1, the upper-limit log-normalULLN ) with

VZ
We = pLVedDw ~3x 10, three free parametei3,,,,, a, and s,
aD 2
fy(D) = =——%—— exp) - (5In {—D .
and the global Ohnesorge number \7TD(Dax— D) Dmax—D
(25

Oh=-—=E—~3x10° . . o

Vyp Dy ' According to Simmons and HanrattyrHe drops size distri-

butions are best represented by an upper-limit log-normal
where y is the surface tension of the liquig, its density, distributions functions, but there is consistent underpredic-
and u its dynamic viscosity. tion of the number of small drogd_évy stable pdf may lead

One of the objectives of this experiment was to showto better prediction since they have well-known heavy-tailed
evidence of the stratification of the drop size. A globaldistributions.

Fr number, defin
oude number, defined as 1. Least square fitting of the pdf computed by FFT

: VéG o The pdf is calculated by inversing the Fourier transform
Fr‘av ~1 (12) through the use of a specific fast Fourierr transform
(FFT) algorithm described in R¢R0]. All four parameters
may characterize this sedimentation effect. Unfortunately, Frr, 8, o, & were free in order to give the best fit to the
is not, in this experiment, an independent new parametegxperimental data. Except in the fitting of the ULLN where
since the value of the Froude number is proportional to théhe volume drop pdf is directly employed, the logarithmic
value of the Weber number. Since a higher gas speed lesse@sperimental pdf is calculated from the bin distribution of
the effect of the gravity, the high value of this nondimen-the volume; the cumulated volume of drops in the bin
sional number indicates that gravitation and sedimentatiofln(d;),In(d;+1)] is taken to be the probability; that the
are not, in this experiment, governing the physical process dbgarithm of the drop diameter is located within this interval.
atomization. However, sedimentation does actually occur allhe corresponding density is thenp; divided by the width
along the pipe, as reported in Rgf.2]. Therefore, it has of the interval. This density is then affected to the midst of
been chosen to focus on the 26 measurements made on ttie interval. Pdf’s are then fitted by minimizing the error
centerline where this stratification is less important. function

/ Y
B. Fitting of the drop spray pdf Erm,= 2 G-y 26
2y

We have used original data set provided by Dr. Simmons
and Profgsspr I—_|anratty. T hese dgta are 9“’?” by normalizq}ahereyi are the measurements apdthe results of the fit-
volume distribution function$, which are defined by ting. The algorithm used is the implementation of the
Levenberg-Marquardt algorithm delivered in Matib Fig-

av =f(D), (20) ure 1 shows the result of such a fitting. Comparison is made
db between log-stable, upper-limit Evans, log-Weibull, and log-
normal pdf. On the lower diagram the pdf has been repre-
o sented on a logarithmic scale putting an emphasis on the tail
f fuD)dD=1, (21)  of the distribution. It is clear that log-stable laws cope better
0 with the left tail of these pdf's.
The relative error Egrcorresponding to the different fit-
fy(D)dD = f(D)D3dD, (22 tings is represented in Fig. 2. Experiments 1-8 are made with
Vs equal to 30 m/s, experiments 9-14 wikkg equal to
wheref, is a non-normalized number distribution. 35 m/s, 15-20 with 43 m/s, and 21-26 with 50 m/s. The

Traditional empirical volume distributions mentioned performance of the log-stable law is roughly equivalent to
above are the log-normal pdf which possesses two free pahe log-normal law for the lower value of the air velocity and
rametersD,, and o, the valuea=2 has actually been found several tiexperi-

L L ment numbers 1, 2, 6, and.#or higher velocity, the better
_ = _ 2 overall performance of the log-stable pdf is clear. However,
B \/ZTDO’ exp( oz[ln(D) (D] ) @3 this law possesses priori four independent parameters and
should obviously perform better than laws, like upper-limit
and the log-Weibull pdf with three free parametegsD,y, Evans and log-Weibull, possessing only three parameters or
and X, like log-normal law possessing two parameters. Neverthe-

fu(D)
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FIG. 1. Fitting of the drop spray pdis =0.041 m/s and/sc  FIG. 3. Moment(D9, of the drop spray pdf. Comparison be-
=35 m/s. From left to right the pdf's are log-stable pdf, upper-limit yyeen experimental and several fitted pdf&; =0.022 m/s and
Evans pdf, log-normal pdf, and log-Weibull pdf. Vse=43 m/s.

less, except for the experiment number 21 wherd .83 and
B=-0.80, and number 22 where=1.81 andB=-0.94, the <Dq>\e,xa°t:f D%,(D)dD. (27
same valugg=-1 has been found. This agrees with our mod- 0

eling and it should be no longer considered as an indepeny,q ¢an note that, due to the power-law tail of skewed stable
dent parameterAnother exception was when the value — yisyibtion for large negative values, exact negative mo-
=2 h*”?s been.obta}lned bUt. |t_has alr.eady been seerpti@t  onig are rigorously infinite. Actually, this singularity is
meaningless in this caget is interesting to note that totally smoothed out by surface tension or viscosity, which prevents
skewed to the lef{=-1) log-stable distributions are the o appearance of drops under a given $i&ted to We
only log-stable distributions that possess finite moments of_ 1 [19] or Re~1). So, our “asymptotic solution” should
all positive orders. rather be considered as an “intermediate asymptotic solu-
tion.”

Moreover, in order to prevent from taking into account

The ability of log-stable distributions to tackle with the |arge or small drops that have not been measured in the ex-
small drops side of the distribution can be demonstrated iheriment, the range needs to be restricted to the measurement
another way by their better restitution of moments and espeange[D,,,,,Dinad. Thus moments plotted in Fig. 3 have been
cially negative moments of the distribution. Theoretically, calculated using experimentablume pdfand fittedvolume
moments of the volume distribution are defined by &Y).  pdf through relation28):

oo

2. Moments of the volume distribution

10‘2 T T T T T T T Dmax
ol (Dfv=] ~ DiH(D)dD. (28)
10°H — Log-Weibull i B s e B - Dmin

Small drops have a greater importance than large drops for
negative moments of the distribution whereas large drops
dominate positive moments. Therefore, the poor performance
(cf. Fig. 3) of empirical pdf for negative moments can be
related to their poor modeling of the small drop part of the
pdf. For positive moments and for large values of the mo-
ment ordeiq, 1[Dmin'Dma>J(D)quV(D) is quickly behaving like
DqéDmax(D). This means that the “truncation” effect is very
important and that positive moments are quickly behaving as
D] . As a result, curves of Fig. 3 are asymptotically straight

: : : ; i ; ; lines whereas they should be power lagas for exact posi-

r 5 5 5 5 ? 5 ? tive moments of log-stable distributions

FIG. 2. Comparison of the relative error for the different fitted 3. Sauter mean diameter

pdf's. Note that the velocity of the gas is increasing with the index  Practically, the preceding moment fitting is of special in-
number of the experiment. terest in moment-based spray modeling. One of the most
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FIG. 4. Sauter mean diamet@n wm). Comparison between FIG. 5. Stability indexa found for different values of We and

experimental results and values given by several fitted pdf’s. Vsl

useful moments is the Sauter mean diamgigroften writ-  £roude number in an unknown way, hidden moreover by its
ten asds,. It is the diameter of the drop having the same arégyroportionality to the Weber number.

to volume ratio as the whole liquid. It can be expressed using
the number distributioror equivalently thevolume distribu- IV. CONCLUSION

tion using relation(29):
g 29 We have shown that log-stable distributions are able to

describe drops spray pdf in an efficient way. They actually

3
f D*f,(D)dD f fu(D)dD 1 perform at least as well as pdf classically used in atomization
dsp= = = . and seem to be much better for high Weber number sprays.
J D?f,(D)dD f D f(D)dD f D f(D)dD Assuming that they are totally skewed to the left, they pos-

sess no more independent parameters than empirically con-
(29)  structed pdf. Moreover, all of them can be assigned a physi-
) . o ) cal interpretation: the stability index governs the tail of the
Written with thevolume distributionit involves a negative  gigprinytion, the scale parametergoverns(in combination
moment. Since truncated log-stable distributions better fit, ;i «) the width of the distribution, and the shift parameter

moments and especially negative moments of the volum% (in combination witha and o) governs the mean of the
distribution than standard distributions, they are more effiyistribution.

cient in calculating the Sauter mean diameter of the spray The small sedimentation of drops in the experiment pre-
[15]. This can be verified in Fig. 4. vents any reasonable correlations between parameters of the

4. Variation of the parameters with We and &/ LY TR B S T

: : : ¥ Vg =0.022ms |

Figures 5 and 6 show the evolution of the stability index 3 vamoommel.

a and Scale paramete’fverSUS tWO EXteI’na| pal’ametel’s We 029F oo ................... .................... ................ V:=D.05m/s
and Vg,. The fitted values ofx are located in the interval : : : §¥§:213§3$§
11.75, 3. Actually, we can notice that when the gas flow rate oz 2 zijg:}s';’fms

is increasedgq decreases and the distribution is getting more
and more heavy tailed since totally skewed to the left stable o
pdf are decreasing like 4@ for x——o. This can be o
related to Simmons and Hanratty's following remdd]: 026
“There is a clear increase in the importance of small drops
as the gas flow rate is increaséd 025
These fittings do not exhibit any clear similarity law re-
lating @ and o to We andVg.. In homogeneous isotropic
turbulence, log-stable models lead to a constant value of
equal to 1.65 andr* can be related to [iRe or In(Re\) -
[9,10,27. But comparatively, we cannot make here any ho- ! 5 2 25 8 35

N

7 N T PR R PTPPI

0.24

. . . We x107
mogeneity hypothesis, since larger drops and smaller drops ¢ *
are eventually separated by sedimentatiiugh this effect FIG. 6. Scale parameter found for different values of We and

is not dominant This sedimentation effect varies with the vg,.
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distribution and external parameters like gas Weber numberibution [24]. Lévy stable distributions are broader and the
and liquid mass flow; even less with a universal nature. Onelrop size volume pdfand not the volume pdf of the loga-
can notice that values af given in Fig. 3 are not related to rithm of the drop size that we actually studjesd eventually
the valuea=1.65 found by Kida for the dissipation pdf of diverging at zerd10], making the volume density of drops
turbulence. Yet, there are firm convictions that the size off arbitrarily small size, arbitrarily large. This is not a short-
drops in a turbulent spray should be correlated in some wagoming since the probability of any bin remains finitee
to the size of eddies in the liquil22]. Nevertheless, direct pdf is integrableé Moreover, the cascade mechanism and the
comparison with turbulence cascade model is difficult as turdrop diameter distribution should be bounded from below by
bulence does actually occur in both gas and liquid and mosome kind of minimum scale given by either Wa&0[19] or
mentum exchange between both phases is complex and iRe~ 1, whichever leads to the largest scale. This may vary
portant in the mechanism of drop breakup. As previouslyfrom liquid to liquid, since viscosity may, in some case, pre-
noticed by Novikov and Dommermuf{6], it seems difficult  vent the formation of drops, before surface tengifmn high
to build a bridge between cascade in drop breakup and i®@hnesorge numbgr
eddy breakup without making correlated measures of drop
radii and t_url_JuIence dissipation. _ o _ ACKNOWLEDGMENT
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