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In this paper, it will be shown that “totally skewed to the left” log-stable distributions are suitable asymptotic
solutions to a fragmentation equation. This result generalizes Kolmogorov’s work on log-normal distribution
for the drops’ size number distribution of particles under pulverization. Indeed, Kolmogorov’s discrete process
is extended to a continuous time Markov process for the volume distribution instead of the number distribution.
New hypotheses are then introduced which lead to log-stable distributions as asymptotic solutions of the
fragmentation equation. Log-stable laws are then used to fit experimental probability distribution function(pdf)
of Simmons and Hanratty measuring drop sizes in a horizontal annular gas-liquid flow at high Weber number
[Int. J. Multiphase Flow27, 861(2001)]. Log-stable pdf better fits to the experimental pdf than usual empirical
spray pdf and especially, because of the heavy tail of the associated stable distribution, in the small drops part
of the distribution.
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I. INTRODUCTION

There is a real industrial incentive in developing soundly
founded drop spray probability distribution function(pdf).
Commonly used pdf’s are Rosin-Rammler(akin to Weibull
pdf), modified Rosin-Rammler(akin to log-Weibull pdf), or
upper-limit log-normal pdf of Mugele and Evans[1]. But all
of these, except the seldom used log-normal pdf, are built on
empirical grounds. In this paper, a fragmentation equation is
proposed which possesses asymptotically self-similar log-
stable drop volume pdf solutions. This result may be used for
modeling high Weber-number sprays.

Related works, on atomization, date back to Kolmogorov
[2] who proposed in 1941 a discrete Markov process explain-
ing why the log-normal distribution could be used as a num-
ber pdf for particles during pulverization. Oboukhov[3] ap-
plied this modeling to turbulence intermittencies, which was
one of the roots of the “refined similarity hypothesis” devel-
oped in 1962 by Kolmogorov[4]. More recently, Novikov
proposed to apply some ideas on turbulence intermittencies
[5] back to turbulent spray modeling through the use of in-
finitely divisible pdf [6], of whom stable distributions form a
small subset. However, infinitely divisible distributions are
too generic to be easily handled or computed. In a related
way, Zhou and Yu[7] proposed a multifractal analysis of the
spray generated by an air-blast nozzle but without relating it
explicitly to the spray pdf. Lastly, the work of Kolmogorov
has been extended to continuous time and further analyzed
by Gorokhovski and Saveliev[8]. Their continuous Markov
process is very similar to Kostoglou’s[9] fragmentation
equation with a homogeneous kernel. Finally, let us pinpoint
that log-stable distributions have already been used in turbu-
lence intermittency modeling by Kida[10,11] and Schertzer
and co-workers[12].

In the first part of this paper, we generalize Kolmogorov’s
work from numberpdf to volumepdf using the formalism
developed by Gorokhovski and Saveliev[8]. It is then shown
that replacing Kolmogorov’s hypothesis of finiteness of the

first three moments by assuming that there exists a real num-
ber a such that moments of ordera and above are infinite,
and it leads asymptotically to a log-stable volume pdf. In the
second part, this modeling is applied to the distribution of
droplets in a high Weber number spray: a log-stable volume
drops pdf is fitted to spray pdf obtained by Simmons and
Hanratty[13] in a horizontal annular gas-liquid flow. Com-
parison is then made between these pdf’s and the most
widely used ones in atomization(log-Weibull, upper-limit
Evans, and log-normal). The good performance of log-stable
distributions in the least square sense is enhanced by their
better ability to model the tail or small-drops part of the
distribution and to fit moments of the distribution. This may
actually prove to be important for some modeling of poly-
disperse multiphase systems built on moments of the distri-
bution: for instance, on the spray intensity, i.e. the volume
number of drops, or on the surface volumetric density.

II. FRAGMENTATION EQUATION AS A MASTER
EQUATION FOR THE VOLUME DISTRIBUTION

Experimental results in Sec. III indicate that, totally
skewed to the left log-stable volume pdf, are good candidates
to describe spray pdf. In this section, we present a possible
theoretical justification of this fact. Part of our work is based
on Ref. [8], in which a stochastic modeling asymptotically
leading to a log-normal number distribution is obtained. We
present here a simpler derivation of the equation and gener-
alize these results further, first to volume distributions and
second to log-stable pdf.

A. Derivation of the master equation
of the volume distribution

Let nsrd be the frequency of disintegration of drops of
radiusr. Let Vsrd be the volume occupied by drops of radius
r and let, in this fragmentation or atomization process,
qsad .da be the fraction of the volumeVsrd that creates drop-
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lets whose sizes are in the rangerfa,a+dag. Then the vol-
ume lost in a unit time by drops in the rangefr1,r1+dr1g is
equal tonsr1dVsr1ddr1, and the resulting volume gained by
drops in the range r1fa,a+dag is equal to
nsr1dVsr1ddr1qsadda. To obtain the volume of drops in the
rangefr ,r +drg, let us notice that the relationr1=r /a is a
simple change of variable, so that the differential element
dadr1 can be written as

dadr1 =
da

a
dr. s1d

Then, assuming that multipliersa belong to the interval
[0,1], the volume gained in a unit time by drops in the range
fr ,r +drg is equal to

E
0

1

qsadnsr1dVsr1ddadr1 = drE
0

1

qsadnS r

a
DVS r

a
Dda

a
, s2d

which leads to

] Vsrd
] t

= sI − − 1dfnsrdVsrdg, s3d

where

I −Fsrd =E
0

1

FS r

a
Dqsad

da

a
. s4d

It can be first noted that rescaling both sides of Eq.(3) by the
total volume of liquid would give the same equation since it
is a constant. Therefore up to this rescaling,Vsrd can be
considered as the volume distribution of diametersfvs2rd:

fvs2rd =
Vsrd

E
0

`

Vsrddr

. s5d

Second, the hypothesis thatq should only depend on the ratio
a between the radius of the daughter drops and the parents’
drop is a very strong hypothesis called “scaling similarity” in
Ref. [14] and “homogeneous kernel” in Ref.[9]. It can be
assumed that this is valid for spray with a very high Weber
number We and low or finite Ohnesorge number Oh(see Sec.
III for a definition of these numbers). Breakup of drops is
then mainly governed by their kinetic energy, which can be
thought as nearly infinite;q can then be considered as scale
independent. This is not the case for lower value of We or
very high value of Oh[16]. Finally, let us note that Eq.(3) is
very similar to the homogeneous fragmentation equation of
Ref. [9] but the kernel is, here, assumed to be continuous and
not discrete.

Making, as Kolmogorov[2], the following change of vari-
able:

Tsxd = Vfexpsxdg, ñsxd = nfexpsxdg, b = lnsad, and

lsbddb= qsad/a da

yields

] Tsxd
] t

= sĨ − − 1dfñsxdTsxdg, s6d

Ĩ − ·Tsxd =E
−`

0

Tsx − bdlsbddb s7d

By making the assumption that

E
−`

0

ubuslsbddb, ` for s= 1,2,3 s8d

and considering thatn is constant, Kolmogorov concluded
thatT is asymptotically normal. However, there is noa priori
reason to assume(8) and we will drop this hypothesis, con-
sidering that

E
−`

0

lsbddb= 1 s9d

and that there exists 1,aø2 such that

E
−`

0

ubuslsbddb, ` for s, a, s10d

E
−`

0

ubuslsbddb= + ` for sù a. s11d

B. Asymptotic self-similar log-stable solution

Let us recall, see Ref.[17], that Lévy stable distributions
are defined from their Fourier characteristic function as fol-
lows.

A random variable X is said to have a stable distribution
denoted Lasx;b ,s ,md if there are real parameters0,a
ø2, 0,s, −1øbø1, and m such that its characteristic
function has the following form:

p̂ask;b,s,dd = expsikm − saukua†1 + ifsgnskdgbvsuku,ad‡d,

s12d

where

vsuku,ad = H tansap/2d if a Þ 1

− s2/pdlnuku if a = 1,

anda is the stability index governing the decrease of the tail
of the probability,s is the scale parameter analogous to the
standard deviation of the normal law, andm is the shift pa-
rameter governing, but not to be confounded with, the mean
of the distribution.b is a skewness parameter,b=0 indicates
a symmetric distribution,b,0 a distribution skewed to the
left, and b.0 a distribution skewed to the right. One can
notice that ifa=2, the distribution is Gaussian and the pa-
rameterb is meaningless sincevsuku ,ad=0 (normal distribu-
tions are not skewed). Whenb=−1 totally skewed Lévy dis-
tributions are also characterized by their two-sided Laplace
transform which reads[17] (for aÞ−1 andq.0)
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kexps− qXdl = exp3qd −
sa

cosSpa

2
Dqa4 . s13d

In order to show that totally skewed stable distributions are
suitable solutions of Eq.(6), let us rewrite Eq.(7) as

Ĩ − ·Tsxd =E
x

+`

Tsbdlsx − bddb

=E
−`

+`

TsbdHsb − xdlsx − bddb, s14d

where H is the Heaviside function. Then using two-sided
Laplace transform, one gets, taking the constant valuen=1
for the rate:

] Tss,td
] t

= flssd − 1gTss,td, s15d

where

lssd =E
0

`

ls− xdexpssxddx

is actually a one-sided Laplace transform due to the intro-
duction of the Heaviside function. This leads to

Tss,td = Tss,0dexpf„lssd − 1…tg. s16d

From hypotheses(9)–(11) and a Tauberian theorem[18], we
obtain that the one-sided Laplace transform ofls−xd reads
near 0

lssd = 1 + l̄s+ gsa + osusuad, s17d

wherel̄ is the mean ofls−xd andg is a real number which
can be written as

g = −
sa

cosSpa

2
D .

If initially Tsx,0d=dx0
, thenT is asymptotically a stable pdf

totally skewed to the left. Indeed, in the limitt→`, the real
part of the term in the exponential is diverging toward −`
and inverting the Laplace transform, the contribution
e−s·xTss,tdds to the volume pdf is negligible. This is not the
case if we imposesat to stay finite and we get the asymptotic
result

Tss,td , exp1ssx0 − l̄td −
sasat

cosSpa

2
D2 st → `,sat finited,

s18d

which is the Laplace characteristic function of ana-stable
distribution with b=−1 and scale parameterst1/a. The vol-
ume distribution can be interpreted as a pdf for the random
variablex=lnsrd. Using scaling properties of Lévy distribu-
tion [17], x/ t1/a is a stable law of stability indexa, skewness

parameterb=−1 and scale parameters. So, we can point out
that

Tsx,td ,
1

t1/a paS x

t1/a ;− 1,s,x0 − l̄tD st → `d s19d

is an asymptotic self-similar solution to Eq.(6) using hy-
potheses(9)–(11). Settinga=2 leads to Kolmogorov’s pre-
vious result.

C. Distribution of conservative or nonconservative quantity

An equation similar to Eq.(3) has been obtained by Gor-
okhovski and Saveliev in Ref.[8] for the numberFsrd of
droplets of radiusr. But the frequencyn had to be replaced
by q0n, whereq0.1 is the mean number of droplets result-
ing from the breakup of the parent drop. Since the total num-
ber of dropletsn is increasing with time, a normalized num-
ber distribution of droplets is defined asf =F /n. Taking the
moment of Eq.(3) and integrating, they could obtain the
following evolution equation for the number of drops:

] n

] t
= n0sq0 − 1dn,

so that the rescaled distributionf satisfied Eq.(3) exactly. We
could have chosen the same way and would have obtained
that the number distribution may asymptotically be log-
stable. However, there is a strong assumption in doing so; the
mean number of dropletsq0 is meaningful, i.e., finite and
independent of the scaler or the ratioa. Reasoning directly
with conserved quantities, such as volume for instance, cir-
cumvents this problem as the rescaling is made using a con-
stant value and the extra parameterq0 is no longer needed.

III. LOG-STABLE PDF IN A HORIZONTAL ANNULAR
GAS-LIQUID FLOW

We are now in position to show that solution(19) can fit
experimental pdf. Actually conditions(9)–(11) with 1,a
ø2 have been inspired by the following experimental results
since we could also have chosena to be in the range 0,a
ø1. This choice was thus not arbitrary.

A. Experimental setup

We considered pdf measured by Simmons and Hanratty
[12] in a horizontal annular gas-liquid flow. Though the ex-
perimental setup is well detailed in Ref.[12] and in refer-
ences therein, its principle is briefly recalled. The flow loop
is an acrylic cylinder 27 m long and of diameterDw
=0.0953 m wide. Air and water mass flows and velocities are
metered at the entrance and measurements are made 21 m
away from the entrance so that the flow can be considered as
fully developed. Drop diametersD are measured with a Mal-
vern Spraytec RTS 5008 analyzer. Data were processed on
billions of drops giving very smooth pdf over three decades
of drop diameters (ranging from less than 1mm to
1000mm). Important parameters of the experiments areVSL,
the velocity of the liquid relatively to the solid cylinder,
ranging from 2.2 to 13.5 cm/s, andVSG, the velocity of the
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gas relatively to the solid, ranging from 30 to 50 m/s. From
these external parameters, one can calculate two important
dimensionless numbers[19]:

the global Weber number

We =
rLVSG

2 Dw

g
< 3 3 106,

and the global Ohnesorge number

Oh =
m

ÎgrLDw

< 3 3 10−6,

whereg is the surface tension of the liquid,rL its density,
andm its dynamic viscosity.

One of the objectives of this experiment was to show
evidence of the stratification of the drop size. A global
Froude number, defined as

Fr =
VSG

2

gDw
< 103

may characterize this sedimentation effect. Unfortunately, Fr
is not, in this experiment, an independent new parameter
since the value of the Froude number is proportional to the
value of the Weber number. Since a higher gas speed lessens
the effect of the gravity, the high value of this nondimen-
sional number indicates that gravitation and sedimentation
are not, in this experiment, governing the physical process of
atomization. However, sedimentation does actually occur all
along the pipe, as reported in Ref.[12]. Therefore, it has
been chosen to focus on the 26 measurements made on the
centerline where this stratification is less important.

B. Fitting of the drop spray pdf

We have used original data set provided by Dr. Simmons
and Professor Hanratty. These data are given by normalized
volume distribution functionsfv which are defined by

dV

dD
= fVsDd, s20d

E
0

`

fVsDddD = 1, s21d

fVsDddD = fnsDdD3dD, s22d

where fn is a non-normalized number distribution.
Traditional empirical volume distributions mentioned

above are the log-normal pdf which possesses two free pa-
rametersDm ands,

fVsDd =
1

Î2pDs
expS−

1

2s2flnsDd − lnsDmdg2D , s23d

and the log-Weibull pdf with three free parametersq, Dm,
andX,

fVsDd = q
sln Ddq−1

Dsln Xdq expF− S ln D − ln Dm

ln X
DqG , s24d

the modified Rosin-Rammler pdf is a log-Weibull distribu-
tion whereDm=1, the upper-limit log-normal(ULLN ) with
three free parametersDmax, a, andd,

fVsDd =
dDmax

ÎpDsDmax− Dd
expH− Sd ln F aD

Dmax− D
GD2J .

s25d

According to Simmons and Hanratty “The drops size distri-
butions are best represented by an upper-limit log-normal
distributions functions, but there is consistent underpredic-
tion of the number of small drops.” Lévy stable pdf may lead
to better prediction since they have well-known heavy-tailed
distributions.

1. Least square fitting of the pdf computed by FFT

The pdf is calculated by inversing the Fourier transform
(12) through the use of a specific fast Fourierr transform
(FFT) algorithm described in Ref.[20]. All four parameters
a, b, s, d were free in order to give the best fit to the
experimental data. Except in the fitting of the ULLN where
the volume drop pdf is directly employed, the logarithmic
experimental pdf is calculated from the bin distribution of
the volume; the cumulated volume of drops in the bin
flnsdid , lnsdi +1dg is taken to be the probabilitypi that the
logarithm of the drop diameter is located within this interval.
The corresponding densityyi is thenpi divided by the width
of the interval. This density is then affected to the midst of
the interval. Pdf’s are then fitted by minimizing the error
function

Err2 =Îo sỹi − yid2

o yi
2

, s26d

whereyi are the measurements andỹi the results of the fit-
ting. The algorithm used is the implementation of the
Levenberg-Marquardt algorithm delivered in Matlab™. Fig-
ure 1 shows the result of such a fitting. Comparison is made
between log-stable, upper-limit Evans, log-Weibull, and log-
normal pdf. On the lower diagram the pdf has been repre-
sented on a logarithmic scale putting an emphasis on the tail
of the distribution. It is clear that log-stable laws cope better
with the left tail of these pdf’s.

The relative error Err2 corresponding to the different fit-
tings is represented in Fig. 2. Experiments 1–8 are made with
VSG equal to 30 m/s, experiments 9–14 withVSG equal to
35 m/s, 15–20 with 43 m/s, and 21–26 with 50 m/s. The
performance of the log-stable law is roughly equivalent to
the log-normal law for the lower value of the air velocity and
the valuea=2 has actually been found several time(experi-
ment numbers 1, 2, 6, and 7). For higher velocity, the better
overall performance of the log-stable pdf is clear. However,
this law possessesa priori four independent parameters and
should obviously perform better than laws, like upper-limit
Evans and log-Weibull, possessing only three parameters or
like log-normal law possessing two parameters. Neverthe-
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less, except for the experiment number 21 wherea=1.83 and
b=−0.80, and number 22 wherea=1.81 andb=−0.94, the
same valueb=−1 has been found. This agrees with our mod-
eling and it should be no longer considered as an indepen-
dent parameter.(Another exception was when the valuea
=2 has been obtained but it has already been seen thatb is
meaningless in this case.) It is interesting to note that totally
skewed to the leftsb=−1d log-stable distributions are the
only log-stable distributions that possess finite moments of
all positive orders.

2. Moments of the volume distribution

The ability of log-stable distributions to tackle with the
small drops side of the distribution can be demonstrated in
another way by their better restitution of moments and espe-
cially negative moments of the distribution. Theoretically,
moments of the volume distribution are defined by Eq.(27).

kDqlV
exact=E

0

`

DqfVsDddD. s27d

One can note that, due to the power-law tail of skewed stable
distribution for large negative values, exact negative mo-
ments are rigorously infinite. Actually, this singularity is
smoothed out by surface tension or viscosity, which prevents
the appearance of drops under a given size(related to We
,10 [19] or Re,1). So, our “asymptotic solution” should
rather be considered as an “intermediate asymptotic solu-
tion.”

Moreover, in order to prevent from taking into account
large or small drops that have not been measured in the ex-
periment, the range needs to be restricted to the measurement
rangefDmin,Dmaxg. Thus moments plotted in Fig. 3 have been
calculated using experimentalvolume pdfand fittedvolume
pdf through relation(28):

kDqlV =E
Dmin

Dmax

DqfVsDddD. s28d

Small drops have a greater importance than large drops for
negative moments of the distribution whereas large drops
dominate positive moments. Therefore, the poor performance
(cf. Fig. 3) of empirical pdf for negative moments can be
related to their poor modeling of the small drop part of the
pdf. For positive moments and for large values of the mo-
ment orderq, 1fDmin,Dmaxg

sDdDqfVsDd is quickly behaving like
DqdDmax

sDd. This means that the “truncation” effect is very
important and that positive moments are quickly behaving as
Dmax

q . As a result, curves of Fig. 3 are asymptotically straight
lines whereas they should be power laws(as for exact posi-
tive moments of log-stable distributions).

3. Sauter mean diameter

Practically, the preceding moment fitting is of special in-
terest in moment-based spray modeling. One of the most

FIG. 1. Fitting of the drop spray pdf;VSL=0.041 m/s andVSG

=35 m/s. From left to right the pdf’s are log-stable pdf, upper-limit
Evans pdf, log-normal pdf, and log-Weibull pdf.

FIG. 2. Comparison of the relative error for the different fitted
pdf’s. Note that the velocity of the gas is increasing with the index
number of the experiment.

FIG. 3. MomentkDqlV of the drop spray pdf. Comparison be-
tween experimental and several fitted pdf’s;VSL=0.022 m/s and
VSG=43 m/s.
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useful moments is the Sauter mean diameter[1], often writ-
ten asd32. It is the diameter of the drop having the same area
to volume ratio as the whole liquid. It can be expressed using
the number distributionor equivalently thevolume distribu-
tion using relation(29):

d32 =
E D3fnsDddD

E D2fnsDddD

=
E fVsDddD

E D−1fVsDddD

=
1

E D−1fVsDddD

.

s29d

Written with thevolume distribution, it involves a negative
moment. Since truncated log-stable distributions better fit
moments and especially negative moments of the volume
distribution than standard distributions, they are more effi-
cient in calculating the Sauter mean diameter of the spray
[15]. This can be verified in Fig. 4.

4. Variation of the parameters with We and VSL

Figures 5 and 6 show the evolution of the stability index
a and scale parameters versus two external parameters: We
and VSL. The fitted values ofa are located in the interval
]1.75, 2]. Actually, we can notice that when the gas flow rate
is increased,a decreases and the distribution is getting more
and more heavy tailed since totally skewed to the left stable
pdf are decreasing like 1/uxusa+1d for x→−`. This can be
related to Simmons and Hanratty’s following remark[12]:
“There is a clear increase in the importance of small drops
as the gas flow rate is increased.”

These fittings do not exhibit any clear similarity law re-
lating a and s to We andVSL. In homogeneous isotropic
turbulence, log-stable models lead to a constant value ofa
equal to 1.65 andsa can be related to lnsRed or lnsReld
[9,10,21]. But comparatively, we cannot make here any ho-
mogeneity hypothesis, since larger drops and smaller drops
are eventually separated by sedimentation(though this effect
is not dominant). This sedimentation effect varies with the

Froude number in an unknown way, hidden moreover by its
proportionality to the Weber number.

IV. CONCLUSION

We have shown that log-stable distributions are able to
describe drops spray pdf in an efficient way. They actually
perform at least as well as pdf classically used in atomization
and seem to be much better for high Weber number sprays.
Assuming that they are totally skewed to the left, they pos-
sess no more independent parameters than empirically con-
structed pdf. Moreover, all of them can be assigned a physi-
cal interpretation: the stability indexa governs the tail of the
distribution, the scale parameters governs(in combination
with a) the width of the distribution, and the shift parameter
m (in combination witha and s) governs the mean of the
distribution.

The small sedimentation of drops in the experiment pre-
vents any reasonable correlations between parameters of the

FIG. 4. Sauter mean diameter(in mm). Comparison between
experimental results and values given by several fitted pdf’s.

FIG. 5. Stability indexa found for different values of We and
VSL.

FIG. 6. Scale parameters found for different values of We and
VSL.
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distribution and external parameters like gas Weber number
and liquid mass flow; even less with a universal nature. One
can notice that values ofa given in Fig. 3 are not related to
the valuea=1.65 found by Kida for the dissipation pdf of
turbulence. Yet, there are firm convictions that the size of
drops in a turbulent spray should be correlated in some way
to the size of eddies in the liquid[22]. Nevertheless, direct
comparison with turbulence cascade model is difficult as tur-
bulence does actually occur in both gas and liquid and mo-
mentum exchange between both phases is complex and im-
portant in the mechanism of drop breakup. As previously
noticed by Novikov and Dommermuth[6], it seems difficult
to build a bridge between cascade in drop breakup and in
eddy breakup without making correlated measures of drop
radii and turbulence dissipation.

Lastly, it is common knowledge in atomization studies
that “the fluctuations of the total number of droplets about
the mean [are not] negligible” [23]. Having a look at the
distributions, normal distributions are rather narrow whereas
log-normal are somewhat wider. This makes simulations of
log-normal cascade difficult and some authors have tried to
replace them by the close-looking but narrower Gamma dis-

tribution [24]. Lévy stable distributions are broader and the
drop size volume pdf(and not the volume pdf of the loga-
rithm of the drop size that we actually studied) is eventually
diverging at zero[10], making the volume density of drops
of arbitrarily small size, arbitrarily large. This is not a short-
coming since the probability of any bin remains finite(the
pdf is integrable). Moreover, the cascade mechanism and the
drop diameter distribution should be bounded from below by
some kind of minimum scale given by either We,10 [19] or
Re,1, whichever leads to the largest scale. This may vary
from liquid to liquid, since viscosity may, in some case, pre-
vent the formation of drops, before surface tension(for high
Ohnesorge number).
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